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Overview: Lines of Communication

▪ The cone snail kills prey with venom that disables 

neurons

▪ Neurons are nerve cells that transfer information 

within the body

▪ Neurons use two types of signals to communicate: 

electrical signals (long distance) and chemical 

signals (short distance)



▪ Interpreting signals in the nervous system involves 

sorting a complex set of paths and connections

▪ Processing of information takes place in simple 

clusters of neurons called ganglia or a more 

complex organization of neurons called a brain
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Concept 37.1: Neuron structure and organization 
reflect function in information transfer

▪ The neuron is a cell type that exemplifies the close 

fit of form and function that often arises over the 

course of evolution
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Neuron Structure and Function

▪ Most of a neuron’s organelles are in the cell body

▪ Most neurons have dendrites, highly branched 

extensions that receive signals from other neurons

▪ The single axon, a much longer extension, 

transmits signals to other cells

▪ The cone-shaped base of an axon, where signals 

are generated, is called the axon hillock



Figure 37.2
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▪ The branched ends of axons transmit signals to 

other cells at a junction called the synapse

▪ At most synapses, chemical messengers called 

neurotransmitters pass information from the 

transmitting neuron to the receiving cell
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▪ Neurons of vertebrates and most invertebrates 

require supporting cells called glial cells

▪ In the mammalian brain, glia outnumber neurons 

10- to 50-fold
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Introduction to Information Processing

▪ Nervous systems process information in three 

stages

▪ Sensory input

▪ Integration

▪ Motor output
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▪ Sensory neurons transmit information about 

external stimuli or internal conditions

▪ This information is sent to the brain or ganglia, 

where interneurons integrate (analyze and 

interpret) the sensory input

▪ Neurons that extend out of the processing centers 

trigger muscle or gland activity

▪ For example, motor neurons transmit signals to 

muscle cells, causing them to contract
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▪ The neurons that carry out integration are often 

organized in a central nervous system (CNS)

▪ The neurons that carry information into and out 

of the CNS form the peripheral nervous system 

(PNS)

▪ PNS neurons, bundled together, form nerves
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Concept 37.2: Ion pumps and ion channels establish 
the resting potential of a neuron

▪ The inside of a cell is negatively charged relative to 

the outside

▪ This difference is a source of potential energy, 

termed membrane potential

▪ The resting potential is the membrane potential of 

a neuron not sending signals

▪ Changes in membrane potential act as signals, 

transmitting and processing information
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Formation of the Resting Potential

▪ K and Na play an essential role in forming the 

resting potential

▪ In most neurons, the concentration of K is higher 

inside the cell, while the concentration of Na is 

higher outside the cell 

▪ Sodium-potassium pumps use the energy of ATP 

to maintain these K and Na gradients across the 

plasma membrane



Table 37.1
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Figure 37.6
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▪ The opening of ion channels in the plasma 

membrane converts the chemical potential energy 

of the ion gradients to electrical potential energy

▪ Ion channels are selectively permeable, allowing 

only certain ions to pass through

▪ A resting neuron has many open potassium 

channels, allowing K to flow out

▪ The resulting buildup of negative charge within the 

neuron is the major source of membrane potential
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Modeling the Resting Potential

▪ Resting potential can be modeled by an artificial 

membrane that separates two chambers

▪ The concentration of KCl is higher in the inner 

chamber and lower in the outer chamber

▪ K+ diffuses down its gradient to the outer chamber

▪ Negative charge (Cl−) builds up in the inner chamber

▪ At equilibrium, both the electrical and chemical 

gradients are balanced



Figure 37.7
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▪ The equilibrium potential (Eion) is the membrane 

voltage for a particular ion at equilibrium and can be 

calculated using the Nernst equation

▪ The equilibrium potential for K is –90 mV

▪ The resting potential of an actual neuron is about 

–60 to –80 mV because a small amount of Na

diffuses into the cell
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▪ In a resting neuron, the currents of K and Na are 

equal and opposite, and the resting potential across 

the membrane remains steady
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Figure 37.8
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Figure 37.8-2
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Figure 37.8-3
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Figure 37.8-4
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Concept 37.3: Action potentials are the signals 
conducted by axons

▪ Researchers can record the changes in membrane 

potential when a neuron responds to a stimulus

▪ Changes in membrane potential occur because 

neurons contain gated ion channels that open or 

close in response to stimuli

▪ A voltage-gated ion channel opens or closes in 

response to a shift in the voltage across the plasma 

membrane of the neuron



Figure 37.10
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Hyperpolarization and Depolarization

▪ When gated K channels open, K diffuses out, 

making the inside of the cell more negative

▪ This is hyperpolarization, an increase in 

magnitude of the membrane potential



Figure 37.11-1
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▪ Opening other types of ion channels triggers a 

depolarization, a reduction in the magnitude of the 

membrane potential

▪ For example, depolarization occurs if gated Na

channels open and Na diffuses into the cell
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Figure 37.11-2
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Graded Potentials and Action Potentials

▪ Graded potentials are changes in polarization 

where the magnitude of the change varies with the 

strength of the stimulus

▪ Graded potentials decay with distance from the 

source



▪ If a depolarization shifts the membrane potential 

sufficiently, it results in a massive change in 

membrane voltage, called an action potential

▪ Action potentials have a constant magnitude and 

transmit signals over long distances
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▪ Action potentials occur whenever a depolarization 

increases the membrane potential to a particular 

value, called the threshold

▪ Action potentials are all or none
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Figure 37.11-3
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Generation of Action Potentials: A Closer Look

▪ An action potential can be considered as a series of 

stages

▪ At resting potential

1. Most voltage-gated sodium (Na) channels are 

closed; most of the voltage-gated potassium (K) 

channels are also closed
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Figure 37.12-1
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▪ When stimulus depolarizes the membrane

2. Some gated Na+ channels open first, and Na flows 

into the cell

3. During the rising phase, the threshold is crossed, 

and the membrane potential increases 

4. During the falling phase, voltage-gated Na

channels become inactivated; voltage-gated K

channels open, and K flows out of the cell

© 2016 Pearson Education, Inc.



Figure 37.12-2
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Figure 37.12-3
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Figure 37.12-4
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5. During the undershoot, membrane permeability to 

K is at first higher than at rest, and then voltage-

gated K channels close and resting potential is 

restored
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Figure 37.12-5
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▪ During the refractory period after an action 

potential, a second action potential cannot be 

initiated

▪ The refractory period is a result of a temporary 

inactivation of the Na channels
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Conduction of Action Potentials

▪ At the site where the action potential is initiated 

(usually the axon hillock), an electrical current 

depolarizes the neighboring region of the axon 

membrane

▪ Action potentials travel only toward the synaptic 

terminals

▪ Inactivated Na channels behind the zone of 

depolarization prevent the action potential from 

traveling backward



Figure 37.13-s1
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Figure 37.13-s2
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Figure 37.13-s3
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Evolutionary Adaptations of Axon Structure

▪ The speed of an action potential increases with the 

axon’s diameter

▪ In vertebrates, axons are insulated by a myelin 

sheath, which enables fast conduction of action 

potentials

▪ Myelin sheaths are produced by glia—

oligodendrocytes in the CNS and Schwann cells 

in the PNS



Figure 37.14
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Figure 37.14-1
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▪ Action potentials are formed only at nodes of 

Ranvier, gaps in the myelin sheath where voltage-

gated Na channels are found

▪ Action potentials in myelinated axons jump between 

the nodes of Ranvier in a process called saltatory 

conduction

▪ A selective advantage of myelination is space 

efficiency
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Figure 37.15
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Concept 37.4: Neurons communicate with other cells 
at synapses

▪ In most cases, action potentials are not transmitted 

from one neuron to another

▪ Information is transmitted, however, at synapses

▪ Most synapses are chemical synapses, in which a 

chemical neurotransmitter carries information from 

the presynaptic neuron to the postsynaptic cell



▪ The presynaptic neuron synthesizes and packages 

the neurotransmitter in synaptic vesicles located in 

the synaptic terminal

▪ The arrival of the action potential causes the 

release of the neurotransmitter 

▪ The neurotransmitter diffuses across the synaptic 

cleft and is received by the postsynaptic cell
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Figure 37.16
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Generation of Postsynaptic Potentials

▪ Direct synaptic transmission involves binding of 

neurotransmitters to ligand-gated ion channels

in the postsynaptic cell

▪ Neurotransmitter binding causes ion channels to 

open, generating a postsynaptic potential



▪ Postsynaptic potentials fall into two categories

▪ Excitatory postsynaptic potentials (EPSPs) are 

depolarizations that bring the membrane potential 

toward threshold

▪ Inhibitory postsynaptic potentials (IPSPs) are 

hyperpolarizations that move the membrane potential 

farther from threshold
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Summation of Postsynaptic Potentials

▪ The cell body of one postsynaptic neuron may 

receive inputs from hundreds or thousands of 

synaptic terminals

▪ A single EPSP is usually too small to trigger an 

action potential in a postsynaptic neuron



Figure 37.17
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▪ Individual postsynaptic potentials can combine to 

produce a larger postsynaptic potential in a process 

called summation

▪ If two EPSPs are produced in rapid succession, an 

effect called temporal summation occurs
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▪ In spatial summation, EPSPs produced nearly 

simultaneously by different synapses on the same 

postsynaptic neuron add together 

▪ The combination of EPSPs through spatial and 

temporal summation can trigger an action potential
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Figure 37.18
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Figure 37.18-1
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Figure 37.18-2
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▪ Through summation, an IPSP can counter the effect 

of an EPSP

▪ The summed effect of EPSPs and IPSPs 

determines whether an axon hillock will reach 

threshold and generate an action potential
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Modulated Signaling at Synapses

▪ In some synapses, a neurotransmitter binds to a 

receptor that is metabotropic

▪ In this case, movement of ions through a channel 

depends on one or more metabolic steps



▪ Binding of a neurotransmitter to a metabotropic 

receptor activates a signal transduction pathway in 

the postsynaptic cell involving a second messenger

▪ Compared to ligand-gated channels, the effects of 

second-messenger systems have a slower onset 

but last longer
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Neurotransmitters

▪ Signaling at a synapse brings about a response 

that depends on both the neurotransmitter from 

the presynaptic cell and the receptor on the 

postsynaptic cell

▪ A single neurotransmitter may have more than a 

dozen different receptors

▪ Acetylcholine is a common neurotransmitter in 

both invertebrates and vertebrates
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Acetylcholine

▪ Acetylcholine is vital for functions involving muscle 

stimulation, memory formation, and learning

▪ Vertebrates have two major classes of acetylcholine 

receptor, one that is ligand gated and one that is 

metabotropic



▪ The best understood function of the ligand-gated 

ion channel is in the vertebrate neuromuscular 

junction

▪ When acetylcholine released by motor neurons 

binds to this receptor, the ion channel opens and an 

EPSP is generated

▪ This receptor is also found elsewhere in the PNS 

and in the CNS
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▪ A number of toxins disrupt neurotransmission by 

acetylcholine

▪ These include the nerve gas sarin and a bacterial 

toxin that causes botulism

▪ Acetylcholine is one of more than 100 known 

neurotransmitters
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Table 37.2-1
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Table 37.2-2
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Table 37.2-3
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Amino Acids

▪ Glutamate (rather than acetylcholine) is used at the 

neuromuscular junction in invertebrates 

▪ Glycine also acts at inhibitory synapses in the CNS 

that lies outside of the brain

▪ Gamma-aminobutyric acid (GABA) is the 

neurotransmitter at most inhibitory synapses in the 

brain



© 2016 Pearson Education, Inc.

Biogenic Amines

▪ Biogenic amines include 

▪ Norepinephrine and the chemically similar 

ephinephrine

▪ Dopamine

▪ Serotonin

▪ They are active in the CNS and PNS

▪ Biogenic amines have a central role in a number of 

nervous system disorders and treatments
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Neuropeptides

▪ Several neuropeptides, relatively short chains of 

amino acids, also function as neurotransmitters

▪ Neuropeptides include substance P and 

endorphins, which both affect our perception of 

pain

▪ Opiates bind to the same receptors as endorphins 

and produce the same physiological effects
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Gases

▪ Gases such as nitric oxide (NO) and carbon 

monoxide (CO) are local regulators in the PNS

▪ Unlike most neurotransmitters, these are not stored 

in vesicles but are instead synthesized as needed
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Figure 37.12
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Figure 37.UN01-1
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Figure 37.UN01-2
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Figure 37.UN02
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Figure 37.UN03

© 2016 Pearson Education, Inc.

Action potential

50

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l 

(m
V

)

Falling
phase

0 Rising
phase

Threshold (-55)

-50

Resting
potential

-70
-100

0
Time (msec)

Depolarization Undershoot

1 2 3 4 5 6


