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Overview: Lines of Communication

= The cone snall kills prey with venom that disables
neurons

= Neurons are nerve cells that transfer information
within the body

= Neurons use two types of signals to communicate:
electrical sighals (long distance) and chemical
signals (short distance)
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= |nterpreting signals in the nervous system involves
sorting a complex set of paths and connections

= Processing of information takes place in simple
clusters of neurons called ganglia or a more
complex organization of neurons called a brain
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Concept 37.1: Neuron structure and organization
reflect function in information transfer

= The neuron is a cell type that exemplifies the close
fit of form and function that often arises over the
course of evolution
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Neuron Structure and Function

= Most of a neuron’s organelles are in the cell body

= Most neurons have dendrites, highly branched
extensions that receive signals from other neurons

= The single axon, a much longer extension,
transmits signals to other cells

= The cone-shaped base of an axon, where signals
are generated, is called the axon hillock
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Figure 37.2

Dendrites

Stimulus

Axon
hillock

body
Presynaptic
cell

AXxon

Signal
direction \
Synapse

\
Neurotransmitter

© 2016 Pearson Education, Inc.

Synaptic terminals

Postsynaptic cell

Synaptic
terminals

i

—_——



= The branched ends of axons transmit signals to
other cells at a junction called the synapse

= At most synapses, chemical messengers called
neurotransmitters pass information from the
transmitting neuron to the receiving cell
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= Neurons of vertebrates and most invertebrates
require supporting cells called glial cells

* In the mammalian brain, glia outnumber neurons
10- to 50-fold
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Introduction to Information Processing

= Nervous systems process information in three
stages

= Sensory input
= |ntegration
= Motor output
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Figure 37.4
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= Sensory neurons transmit information about
external stimuli or internal conditions

= This information is sent to the brain or ganglia,
where interneurons integrate (analyze and
Interpret) the sensory input

= Neurons that extend out of the processing centers
trigger muscle or gland activity

= For example, motor neurons transmit signals to
muscle cells, causing them to contract
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= The neurons that carry out integration are often
organized in a central nervous system (CNS)

= The neurons that carry information into and out

of the CNS form the peripheral nervous system
(PNS)

= PNS neurons, bundled together, form nerves
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Figure 37.5
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Co

ncept 37.2: lon pumps and ion channels establish

the resting potential of a neuron

t

"'he inside of a cell is negatively charged relative to
ne outside

"his difference Is a source of potential energy,

termed membrane potential

= The resting potential is the membrane potential of
a neuron not sending signals

= Changes in membrane potential act as signals,

t

ransmitting and processing information
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Formation of the Resting Potential

= K*and Na* play an essential role in forming the
resting potential

* In most neurons, the concentration of K* is higher
iInside the cell, while the concentration of Na* iIs
higher outside the cell

= Sodium-potassium pumps use the energy of ATP
to maintain these K+ and Na* gradients across the
plasma membrane
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Table 37.1

Table 37.1 lon Concentrations Inside and Outside
of Mammalian Neurons
Intracellular Extracellular

Concentration Concentration
lon (mMm) (mM)
Potassium (K™) 140 5
Sodium (Na™) 15 150
Chloride (Cl7) 10 120
Large anions (A7) inside 100 Not applicable
cell, such as proteins
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Figure 37.6
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= The opening of ion channels in the plasma
membrane converts the chemical potential energy
of the ion gradients to electrical potential energy

= |lon channels are selectively permeable, allowing
only certain ions to pass through

= A resting neuron has many open potassium
channels, allowing K+ to flow out

= The resulting buildup of negative charge within the
neuron Is the major source of membrane potential
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Modeling the Resting Potential

= Resting potential can be modeled by an artificial
membrane that separates two chambers

= The concentration of KCI is higher in the inner
chamber and lower in the outer chamber

= K* diffuses down its gradient to the outer chamber
= Negative charge (CI7) builds up in the inner chamber

= At equilibrium, both the electrical and chemical
gradients are balanced
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Figure 37.7
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= The equilibrium potential (E,,) Is the membrane

Ion
voltage for a particular ion at equilibrium and can be

calculated using the Nernst equation

[ion]outside
E__=62 mV{log
on m ( g |:Ion]inside

= The equilibrium potential for K+ is —90 mV

= The resting potential of an actual neuron is about
—60 to —80 mV because a small amount of Na*
diffuses into the cell
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= |n a resting neuron, the currents of K* and Na* are
equal and opposite, and the resting potential across
the membrane remains steady
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Figure 37.8
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Figure 37.8-2
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Figure 37.8-3
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Figure 37.8-4
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Concept 37.3: Action potentials are the signals
conducted by axons

= Researchers can record the changes in membrane
potential when a neuron responds to a stimulus

= Changes in membrane potential occur because
neurons contain gated ion channels that open or
close in response to stimuli

= A voltage-gated ion channel opens or closes In
response to a shift in the voltage across the plasma
membrane of the neuron
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Hyperpolarization and Depolarization

= When gated K* channels open, K* diffuses out,
making the inside of the cell more negative

= This is hyperpolarization, an increase In
magnitude of the membrane potential
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Figure 37.11-1
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= Opening other types of ion channels triggers a

depolarization, a reduction in the magnitude of the
membrane potential

= For example, depolarization occurs if gated Na*
channels open and Na* diffuses into the cell
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Figure 37.11-2
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Graded Potentials and Action Potentials

= Graded potentials are changes in polarization
where the magnitude of the change varies with the
strength of the stimulus

= Graded potentials decay with distance from the
source
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= |f a depolarization shifts the membrane potential
sufficiently, it results in a massive change in
membrane voltage, called an action potential

= Action potentials have a constant magnitude and
transmit signals over long distances
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= Action potentials occur whenever a depolarization
Increases the membrane potential to a particular
value, called the threshold

= Action potentials are all or none
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Figure 37.11-3
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Generation of Action Potentials: A Closer Look

= An action potential can be considered as a series of
stages

= At resting potential

1. Most voltage-gated sodium (Na*) channels are
closed; most of the voltage-gated potassium (K*)
channels are also closed
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Figure 37.12-1
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= When stimulus depolarizes the membrane

2. Some gated Na* channels open first, and Na* flows
into the cell

3. During the rising phase, the threshold is crossed,
and the membrane potential increases

4. During the falling phase, voltage-gated Na*
channels become inactivated; voltage-gated K+
channels open, and K* flows out of the cell
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Figure 37.12-2
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Figure 37.12-3
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Figure 37.12-4
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5. During the undershoot, membrane permeability to
K* Is at first higher than at rest, and then voltage-
gated K* channels close and resting potential is
restored
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Figure 37.12-5
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= During the refractory period after an action
potential, a second action potential cannot be
initiated

= The refractory period is a result of a temporary
iInactivation of the Na* channels
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Conduction of Action Potentials

= At the site where the action potential is initiated
(usually the axon hillock), an electrical current

depolarizes the neighboring region of the axon
membrane

= Action potentials travel only toward the synaptic
terminals

= |nactivated Na+ channels behind the zone of

depolarization prevent the action potential from
traveling backward
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Figure 37.13-s1
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Figure 37.13-s2

~—7{ P
/"q\r:,\\‘iz:"_
Action Plasma
potential membrane
-y W A - + + £y &

Action
K+ potential

© 2016 Pearson Education, Inc.



Figure 37.13-s3
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Evolutionary Adaptations of Axon Structure

= The speed of an action potential increases with the
axon’s diameter

= In vertebrates, axons are insulated by a myelin
sheath, which enables fast conduction of action
potentials

= Myelin sheaths are produced by glia—

oligodendrocytes in the CNS and Schwann cells
In the PNS
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Figure 37.14
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Figure 37.14-1
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= Action potentials are formed only at nodes of

Ranvier, gaps in the myelin sheath where voltage-
gated Na* channels are found

= Action potentials in myelinated axons jump between
the nodes of Ranvier in a process called saltatory
conduction

= A selective advantage of myelination is space
efficiency
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Figure 37.15
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Concept 37.4: Neurons communicate with other cells
at synapses

= |[n most cases, action potentials are not transmitted
from one neuron to another

= Information is transmitted, however, at synapses

= Most synapses are chemical synapses, in which a
chemical neurotransmitter carries information from
the presynaptic neuron to the postsynaptic cell
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= The presynaptic neuron synthesizes and packages
the neurotransmitter in synaptic vesicles located In
the synaptic terminal

= The arrival of the action potential causes the
release of the neurotransmitter

= The neurotransmitter diffuses across the synaptic
cleft and Is received by the postsynaptic cell
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Figure 37.16
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Generation of Postsynaptic Potentials

= Direct synaptic transmission involves binding of
neurotransmitters to ligand-gated ion channels
In the postsynaptic cell

= Neurotransmitter binding causes ion channels to
open, generating a postsynaptic potential
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= Postsynaptic potentials fall into two categories

= EXxcitatory postsynaptic potentials (EPSPs) are
depolarizations that bring the membrane potential
toward threshold

= |Inhibitory postsynaptic potentials (IPSPs) are
hyperpolarizations that move the membrane potential
farther from threshold
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Summation of Postsynaptic Potentials

= The cell body of one postsynaptic neuron may
receive inputs from hundreds or thousands of
synaptic terminals

= A single EPSP is usually too small to trigger an
action potential in a postsynaptic neuron
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Figure 37.17
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= |Individual postsynaptic potentials can combine to
produce a larger postsynaptic potential in a process
called summation

= |f two EPSPs are produced in rapid succession, an
effect called temporal summation occurs

© 2016 Pearson Education, Inc.



= |n spatial summation, EPSPs produced nearly
simultaneously by different synapses on the same
postsynaptic neuron add together

= The combination of EPSPs through spatial and
temporal summation can trigger an action potential
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Figure 37.18
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Figure 37.18-1
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Figure 37.18-2
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= Through summation, an IPSP can counter the effect
of an EPSP

= The summed effect of EPSPs and IPSPs
determines whether an axon hillock will reach
threshold and generate an action potential

© 2016 Pearson Education, Inc.



Modulated Signaling at Synapses

= |[n some synapses, a heurotransmitter binds to a
receptor that is metabotropic

= In this case, movement of ions through a channel
depends on one or more metabolic steps
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= Binding of a neurotransmitter to a metabotropic
receptor activates a signal transduction pathway In
the postsynaptic cell involving a second messenger

= Compared to ligand-gated channels, the effects of
second-messenger systems have a slower onset
but last longer
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Neurotransmitters

= Signaling at a synapse brings about a response
that depends on both the neurotransmitter from
the presynaptic cell and the receptor on the
postsynaptic cell

= A single neurotransmitter may have more than a
dozen different receptors

= Acetylcholine is a common neurotransmitter in
both invertebrates and vertebrates
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Acetylcholine

= Acetylcholine is vital for functions involving muscle
stimulation, memory formation, and learning

= Vertebrates have two major classes of acetylcholine

receptor, one that is ligand gated and one that is
metabotropic
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= The best understood function of the ligand-gated
lon channel is In the vertebrate neuromuscular
junction

= When acetylcholine released by motor neurons
binds to this receptor, the ion channel opens and an
EPSP is generated

= This receptor Is also found elsewhere in the PNS
and in the CNS
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= A number of toxins disrupt neurotransmission by
acetylcholine

= These include the nerve gas sarin and a bacterial
toxin that causes botulism

= Acetylcholine is one of more than 100 known
neurotransmitters
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Table 37.2

Table 37.2 Major Neurotransmitters

Neurotransmitter Structure

Acetylcholine 0 CH,
Il
H,C—C—0—CH;—CH;—N*—CH,

CH,
Amino Acids
Glutamate HZN—(IiH—CHz—CHZ—COOH
COOH
Glycine H,N—CH;—COOH
GABA (gamma- H,N—CH;—CH;—CH;—COOH
aminobutyric acid)
Biogenic Amines HO
Norepinephrine
HO CH—CH;—NH,
|
OH
HO,
Dopamine
HO CH5;—CH5—NH,
HO
Serotonin _ﬁ_CHz_CHz_NHz
<
H

Neuropeptides (a very diverse group, only two of which are shown)
Substance P

Arg—Pro—Lys —Pro —GIn—GIn—Phe —Phe— Gly—Leu—Met
Met-enkephalin (an endorphin)

Tyr—Gly—Gly—Phe —Met

Gases
Nitric oxide N=0
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Table 37.2-1

Neurotransmitter

Acetylcholine

Amino Acids
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Glycine

GABA (gamma-
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Table 37.2-2

Neurotransmitter

Biogenic Amines

Norepinephrine

Dopamine

Serotonin

Table 37.2 Major Neurotransmitters

Structure

HO

Ho—(
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OH
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CH

7

© 2016 Pearson Education, Inc.




Table 37.2-3

Table 37.2 Major Neurotransmitters

Neurotransmitter Structure

Neuropeptides (a very diverse group, only two of which are shown)

Substance P
Arg—Pro—Lys —Pro— GIn—GIn—Phe —Phe—Gly—Leu—Met

Met-enkephalin (an endorphin)
Tyr— Gly— Gly—Phe —Met

Gases
Nitric oxide N=O
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Amino Acids

= Glutamate (rather than acetylcholine) is used at the
neuromuscular junction in invertebrates

= Glycine also acts at inhibitory synapses in the CNS
that lies outside of the brain

= Gamma-aminobutyric acid (GABA) is the
neurotransmitter at most inhibitory synapses in the
brain
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Biogenic Amines

= Biogenic amines include

= Norepinephrine and the chemically similar
ephinephrine

= Dopamine
= Serotonin
= They are active in the CNS and PNS

= Biogenic amines have a central role in a number of
nervous system disorders and treatments
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Neuropeptides

= Several neuropeptides, relatively short chains of
amino acids, also function as neurotransmitters

= Neuropeptides include substance P and
endorphins, which both affect our perception of
pain

= Opiates bind to the same receptors as endorphins
and produce the same physiological effects
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Gases

= (Gases such as nitric oxide (NO) and carbon
monoxide (CO) are local regulators in the PNS

= Unlike most neurotransmitters, these are not stored
In vesicles but are instead synthesized as needed
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Figure 37.11

Stimulus Stimulus
+50 ~ +50 ~
S S
E E
IS 0 - < 0
c c
= =
(@] (@]
o o
[¢b) [¢b)
3 Threshold 3 Threshold
5 50+ 5 —50- ~
£ [T T T EEmEmE—TC €  [TTTTTTEEEEER T
g g A
Resting t Resting
potential potential =
100 Hyperpolarizations 100 Depolarizations
- T T T T T T - T T T T T T
012345 012345
Time (msec) Time (msec)
(a) Graded hyperpolarizations (b) Graded depolarizations
produced by two stimuli produced by two stimuli
that increase membrane that increase membrane
permeability to K* permeability to Na*

© 2016 Pearson Education, Inc.

Strong depolarizing stimulus
—

+50-
Action
potential
S
E
< 04
1=
o)
(@)
o
(5]
& Threshold
s —50- ~
S
[<B)
2 -
Resting
potential
-100 ,

0123456

Time (msec)

(c) Action potential triggered by
a depolarization that reaches
the threshold



Figure 37.12
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Figure 37.UNO1-1
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Figure 37.UN01-2
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nervous tissue, Science 179:1011-1014 (1973).
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Figure 37.UNO02
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Figure 37.UNO3
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